Extremal properties of flood-filling games
نویسندگان
چکیده
The problem of determining the number of “flooding operations” required to make a given coloured graph monochromatic in the one-player combinatorial game Flood-It has been studied extensively from an algorithmic point of view, but basic questions about the maximum number of moves that might be required in the worst case remain unanswered. We begin a systematic investigation of such questions, with the goal of determining, for a given graph, the maximum number of moves that may be required, taken over all possible colourings. We give two upper bounds on this quantity for arbitrary graphs, which we show to be tight for particular classes of graphs, and determine this maximum number of moves exactly when the underlying graph is a path, cycle, or a blow-up of a path or cycle.
منابع مشابه
Hyperinvariant subspaces and quasinilpotent operators
For a bounded linear operator on Hilbert space we define a sequence of the so-called weakly extremal vectors. We study the properties of weakly extremal vectors and show that the orthogonality equation is valid for weakly extremal vectors. Also we show that any quasinilpotent operator $T$ has an hypernoncyclic vector, and so $T$ has a nontrivial hyperinvariant subspace.
متن کاملThe complexity of flood-filling games on graphs
We consider the complexity of problems related to the combinatorial game Free-Flood-It, in which players aim to make a coloured graph monochromatic with the minimum possible number of flooding operations. Although computing the minimum number of moves required to flood an arbitrary graph is known to be NP-hard, we demonstrate a polynomial time algorithm to compute the minimum number of moves re...
متن کاملExtremal measures maximizing functionals based on simplicial volumes
We consider functionals measuring the dispersion of a d-dimensional distribution which are based on the volumes of simplices of dimension k ≤ d formed by k + 1 independent copies and raised to some power δ. We study properties of extremal measures that maximize these functionals. In particular, for positive δ we characterize their support and for negative δ we establish connection with potentia...
متن کاملOn Combinatorial Problems of Extremal Nature and Games
of the Dissertation On Combinatorial Problems of Extremal Nature and Games
متن کاملThe Kerr/CFT correspondence and its extensions
We present a first-principles derivation of the main results of the Kerr/CFT correspondence and its extensions using only tools from gravity and quantum field theory, filling a few gaps in the literature when necessary. Firstly, we review properties of extremal black holes that imply, according to semi-classical quantization rules, that their near-horizon quantum states form a centrally-extende...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1504.00596 شماره
صفحات -
تاریخ انتشار 2015